资源类型

期刊论文 733

会议视频 15

会议信息 1

年份

2024 1

2023 52

2022 52

2021 48

2020 35

2019 32

2018 30

2017 38

2016 28

2015 27

2014 25

2013 34

2012 42

2011 40

2010 68

2009 31

2008 42

2007 53

2006 14

2005 11

展开 ︾

关键词

天然气 11

能源 8

普光气田 7

勘探开发 6

页岩气 5

天然气水合物 4

温室气体 4

中国 3

采油工程 3

三相界面 2

中国近海 2

优化设计 2

低温SOFC 2

低碳 2

光声 2

关键技术 2

分布特征 2

大型化成藏 2

大气温度 2

展开 ︾

检索范围:

排序: 展示方式:

Dynamic simulation of a space gas-cooled reactor power system with a closed Brayton cycle

《能源前沿(英文)》 2021年 第15卷 第4期   页码 916-929 doi: 10.1007/s11708-021-0757-9

摘要: Space nuclear reactor power (SNRP) using a gas-cooled reactor (GCR) and a closed Brayton cycle (CBC) is the ideal choice for future high-power space missions. To investigate the safety characteristics and develop the control strategies for gas-cooled SNRP, transient models for GCR, energy conversion unit, pipes, heat exchangers, pump and heat pipe radiator are established and a system analysis code is developed in this paper. Then, analyses of several operation conditions are performed using this code. In full-power steady-state operation, the core hot spot of 1293 K occurs near the upper part of the core. If 0.4 $ reactivity is introduced into the core, the maximum temperature that the fuel can reach is 2059 K, which is 914 K lower than the fuel melting point. The system finally has the ability to achieve a new steady-state with a higher reactor power. When the GCR is shut down in an emergency, the residual heat of the reactor can be removed through the conduction of the core and radiation heat transfer. The results indicate that the designed GCR is inherently safe owing to its negative reactivity feedback and passive decay heat removal. This paper may provide valuable references for safety design and analysis of the gas-cooled SNRP coupled with CBC.

关键词: gas-cooled space nuclear reactor power     closed Brayton cycle     system startup and shutdown     positive reactivity insertion accident    

山东石岛湾200 MWe 球床模块式高温气冷堆(HTR-PM) 核电站示范工程 Review

张作义, 董玉杰, 李富, 张征明, 王海涛, 黄晓津, 李红, 刘兵, 吴莘馨, 王宏, 刁兴中, 张海泉, 王金华

《工程(英文)》 2016年 第2卷 第1期   页码 112-118 doi: 10.1016/J.ENG.2016.01.020

摘要:

世界首台球床模块式高温气冷堆(HTR-PM) 核电站示范工程于2012 年12 月9日在中国山东省荣成市石岛湾厂区完成第一罐混凝土的浇筑,2015年6月完成反应堆厂房建设,然后进入设备安装阶段。目前正在向着在2017年年底实现并网发电的目标顺利推进。1个HTR-PM反应堆模块的热功 率是250 MWth,反应堆堆芯氦气的进出口温度分别是250 °C 和750 °C。蒸汽发生器出口的蒸汽参数是13.25 MPa/567 °C。2个球床反应堆模块连接1台蒸汽轮机,形成一座210 MWe的核电站。项目团队克服了巨大困难,利用中国现有的工业制造技术研制出世界首台设备,实现了一系列重大技术创新。在研发的规划和实施、工业合作伙伴关系的建立、主设备制造、燃料生产、安全审查、站址选择以及安全性和经济性的平衡等方面取得了令人欣慰的进展,为世界同行积累了可以借鉴的经验。

关键词: 核能     高温气冷堆     球床     模块式高温气冷堆     球床模块式高温气冷堆    

A numerical study of helium-heated inorganic membrane reformer coupling to HTGR

YIN Huaqiang, JIANG Shengyao, JU Huaiming, ZHANG Youjie

《能源前沿(英文)》 2007年 第1卷 第4期   页码 446-450 doi: 10.1007/s11708-007-0065-3

摘要: Based on one-dimensional quasi-homogeneous model, a steady-state model and its computer program were developed for helium-heated inorganic membrane reformer coupling to high temperature gas-cooled reactor (HTGR). The results show

关键词: temperature gas-cooled     one-dimensional quasi-homogeneous     steady-state     helium-heated    

我国高温气冷堆发展战略研究

张作义,吴宗鑫,王大中,童节娟

《中国工程科学》 2019年 第21卷 第1期   页码 12-19 doi: 10.15302/J-SSCAE-2019.01.003

摘要:

高温气冷堆和在此基础上发展起来的超高温气冷堆是第四代核能系统研发重点的6种堆型之一。本文介绍了高温气冷堆的特点,对高温气冷堆技术在国内外的最新研发进展进行了简要综述,对高温气冷堆的发展定位等问题进行了讨论。在此基础上对我国高温气冷堆发展路线进行了展望。我国高温气冷堆技术历经跟踪、跨越和自主创新,目前在商业规模模块式高温气冷堆核电站技术上处于世界领先地位。在此基础上,我国正在启动部署后续60万千瓦级模块式高温气冷堆核电机组的研发和配套关键技术的攻关工作,以进一步推动高温气冷堆技术的产业化,保持我国在该领域的国际领先优势。

关键词: 高温气冷堆     高温     技术路线    

中国高温气冷堆制氢发展战略研究

张平,徐景明,石磊,张作义

《中国工程科学》 2019年 第21卷 第1期   页码 20-28 doi: 10.15302/J-SSCAE-2019.01.004

摘要:

核能制氢是一种有应用前景的高效、大规模、无排放的制氢技术,有望在氢气大规模集中供应的场景中起到重要作用。高温气冷堆是最适于核能制氢的堆型,在我国已有几十年的研发基础,目前正在国家科技重大专项支持下建造高温气冷堆示范电站。本文介绍了核能制氢技术的特点和主流的核能制氢工艺包括热化学碘硫循环、混合硫循环和高温蒸汽电解的原理,对国际上核能制氢技术发展现状进行了简要综述,并概述了清华大学在该领域的研发现状。此外对核能制氢的安全性、技术经济评价等问题进行了讨论,在此基础上对与高温气冷堆耦合的制氢技术进行了评价,并以氢气直接还原炼铁为例探讨了高温气冷堆制氢在工业领域的应用前景。最后对我国高温气冷堆制氢技术的发展路线进行了探讨。

关键词: 高温气冷堆     能制氢     热化学循环     高温电解     技术路线    

Improvement of part-load performance of gas turbine by adjusting compressor inlet air temperature and

《能源前沿(英文)》 2022年 第16卷 第6期   页码 1000-1016 doi: 10.1007/s11708-021-0746-z

摘要: A novel adjusting method for improving gas turbine (GT) efficiency and surge margin (SM) under part-load conditions is proposed. This method adopts the inlet air heating technology, which uses the waste heat of low-grade heat source and the inlet guide vane (IGV) opening adjustment. Moreover, the regulation rules of the compressor inlet air temperature and the IGV opening are studied comprehensively to optimize GT performance. A model and calculation method for an equilibrium running line is adopted based on the characteristic curves of the compressor and turbine. The equilibrium running lines calculated through the calculation method involve three part-load conditions and three IGV openings with different inlet air temperatures. The results show that there is an optimal matching relationship between IGV opening and inlet air temperature. For the best GT performance of a given load, the IGV could be adjusted according to inlet air temperature. In addition, inlet air heating has a considerable potential for the improvement of part-load performance of GT due to the increase in compressor efficiency, combustion efficiency, and turbine efficiency as well as turbine inlet temperature, when inlet air temperature is lower than the optimal value with different IGV openings. Further, when the IGV is in a full opening state and an optimal inlet air temperature is achieved by using the inlet air heating technology, GT efficiency and SM can be obviously higher than other IGV openings. The IGV can be left unadjusted, even when the load is as low as 50%. These findings indicate that inlet air heating has a great potential to replace the IGV to regulate load because GT efficiency and SM can be remarkably improved, which is different from the traditional viewpoints.

关键词: inlet air temperature     inlet guide vane (IGV) opening     part-load     equilibrium running line     gas turbine (GT) efficiency     surge margin (SM)    

Corrosion mechanisms of candidate structural materials for supercritical water-cooled reactor

Lefu ZHANG, Fawen ZHU, Rui TANG

《能源前沿(英文)》 2009年 第3卷 第2期   页码 233-240 doi: 10.1007/s11708-009-0024-y

摘要: Nickel-based alloys, austenitic stainless steel, ferritic/martensitic heat-resistant steels, and oxide dispersion strengthened steel are presently considered to be the candidate structural or fuel-cladding materials for supercritical water-cooled reactor (SCWR), one of the promising generation IV reactor for large-scale electric power production. However, corrosion and stress corrosion cracking of these candidate alloys still remain to be a major problem in the selection of nuclear fuel cladding and other structural materials, such as water rod. Survey of literature and experimental results reveal that the general corrosion mechanism of those candidate materials exhibits quite complicated mechanism in high-temperature and high-pressure supercritical water. Formation of a stable protective oxide film is the key to the best corrosion-resistant alloys. This paper focuses on the mechanism of corrosion oxide film breakdown for SCWR candidate materials.

关键词: supercritical water-cooled reactor     general corrosion     oxide film     corrosion mechanism    

Modeling the gas flow in a cyclone separator at different temperature and pressure

Gujun WAN, Guogang SUN, Cuizhi GAO, Ruiqian DONG, Ying ZHENG, Mingxian SHI

《化学科学与工程前沿(英文)》 2010年 第4卷 第4期   页码 498-505 doi: 10.1007/s11705-010-0502-0

摘要: The gas flow field in a cyclone separator, operated within a temperature range of 293 K – 1373 K and a pressure range of 0.1 – 6.5 MPa, has been simulated using a modified Reynolds-stress model (RSM) on commercial software platform FLUENT 6.1. The computational results show that the temperature and pressure significantly influence the gas velocity vectors, especially on their tangential component, in the cyclone. The tangential velocity decreases with an increase in temperature and increases with an increase in pressure. This tendency of the decrease or increase, however, reduces gradually when the temperature is above 1000 K or the pressure goes beyond 1.0 MPa. The temperature and pressure have a relatively weak influence on the axial velocity profiles. The outer downward flow rate increases with a temperature increase, whereas it decreases with a pressure increase. The centripetal radial velocity is strong in the region of 0 – 0.25 below the vortex finder entrance, which is named as a short-cut flow zone in this study. Based on the simulation results, a set of correlations was developed to calculate the combined effects of temperature and pressure on the tangential velocity, the downward flow rate in the cyclone and the centripetal radial velocity in the short-cut flow region underneath the vortex finder.

关键词: cyclone separator     high temperature     high pressure     flow field     numerical simulation    

Preliminary design of an SCO conversion system applied to the sodium cooled fast reactor

《能源前沿(英文)》 2021年 第15卷 第4期   页码 832-841 doi: 10.1007/s11708-021-0777-5

摘要: The supercritical carbon dioxide (SCO2) Brayton cycle has become an ideal power conversion system for sodium-cooled fast reactors (SFR) due to its high efficiency, compactness, and avoidance of sodium-water reaction. In this paper, the 1200 MWe large pool SFR (CFR1200) is used as the heat source of the system, and the sodium circuit temperature and the heat load are the operating boundaries of the cycle system. The performance of different SCO2 Brayton cycle systems and changes in key equipment performance are compared. The study indicates that the inter-stage cooling and recompression cycle has the best match with the heat source characte-ristics of the SFR, and the cycle efficiency is the highest (40.7%). Then, based on the developed system transient analysis program (FR-Sdaso), a pool-type SFR power plant system analysis model based on the inter-stage cooling and recompression cycle is established. In addition, the matching between the inter-stage cooling recompression cycle and the SFR during the load cycle of the power plant is studied. The analysis shows that when the nuclear island adopts the flow-advanced operation strategy and the carbon dioxide flowrate in the SCO2 power conversion system is adjusted with the goal of maintaining the sodium-carbon dioxide heat exchanger sodium side outlet temperature unchanged, the inter-stage cooling recompression cycle can match the operation of the SFR very well.

关键词: sodium-cooled fast reactor (SFR)     supercritical carbon dioxide (SCO2)     brayton cycle     load cycle    

Studies on advanced water-cooled reactors beyond generation III for power generation

CHENG Xu

《能源前沿(英文)》 2007年 第1卷 第2期   页码 141-149 doi: 10.1007/s11708-007-0018-6

摘要: China s ambitious nuclear power program motivates the country s nuclear community to develop advanced reactor concepts beyond generation III to ensure a long-term, stable, and sustainable development of nuclear power. The paper discusses some main criteria for the selection of future water-cooled reactors by considering the specific Chinese situation. Based on the suggested selection criteria, two new types of water-cooled reactors are recommended for future Chinese nuclear power generation. The high conversion pressurized water reactor utilizes the present PWR technology to a large extent. With a conversion ratio of about 0.95, the fuel utilization is increased about 5 times. This significantly improves the sustainability of fuel resources. The supercritical water-cooled reactor has favorable features in economics, sustainability and technology availability. It is a logical extension of the generation III PWR technology in China. The status of international R&D work is reviewed. A new supercritical water-cooled reactor (SCWR) core structure (the mixed reactor core) and a new fuel assembly design (two-rows FA) are proposed. The preliminary analysis using a coupled neutron-physics/thermal-hydraulics method is carried out. It shows good feasibility for the new design proposal.

关键词: Chinese situation     selection     generation     water-cooled     feasibility    

美国高温气冷堆现状 Review

Andrew C. Kadak

《工程(英文)》 2016年 第2卷 第1期   页码 119-123 doi: 10.1016/J.ENG.2016.01.026

摘要:

2005 年,美国国会通过了《2005年能源政策法案》,该法案授权在2021年之前建造和运行一个高温气冷堆(HTGR)。在美国国内专家对未来核技术发展方向进行了多年的研究后,该法案才得以通过。作为该法案的结果,美国国会设立了名为“下一代核电站”的项目,这是一种为制氢提供工艺用热的HTGR。尽管HTGR被寄予了很高的期望,但其现状仅限于完成关于先进燃料、石墨和其他材料的研究计划,并不是如国会在2005年提出的建造一个示范电站。HTGR 发展目标降低背后有许多原因,包括:用于研究的政府资金不足,对反应堆不切实际的高温要求,对“氢”经 济需求的延迟,来自轻水冷却的小型模块反应堆的竞争,业主公司对新技术的兴趣较低,美国天然气价格过低,以及美国对非水冷反应堆许可证申请的具有挑战性的流程等。

关键词: 高温气冷堆     下一代核电站     许可证申请     (美国) 核管理委员会     《2005年能源政策法案》     研究现状    

Feasibility analysis of modified AL-6XN steel for structure component application in supercritical water-cooled

Xinggang LI, Qingzhi YAN, Rong MA, Haoqiang WANG, Changchun GE

《能源前沿(英文)》 2009年 第3卷 第2期   页码 193-197 doi: 10.1007/s11708-009-0030-0

摘要: Modified AL-6XN austenite steel was patterned after AL-6XN superaustenitic stainless steel by introducing microalloy elements such as zirconium and titanium in order to adapt to recrystallizing thermo-mechanical treatment and further improve crevice corrosion resistance. Modified AL-6XN exhibited comparable tensile strength, and superior plasticity and impact toughness to commercial AL-6XN steel. The effects of aging behavior on corrosion resistance and impact toughness were measured to evaluate the qualification of modified AL-6XN steel as an in-core component and cladding material in a supercritical water-cooled reactor. Attention should be paid to degradation in corrosion resistance and impact toughness after aging for 50 hours when modified AL-6XN steel is considered as one of the candidate materials for in-core components and cladding tubes in supercritical water-cooled reactors.

关键词: supercritical water cooled reactor     tensile     impact toughness     corrosion     aging    

Laboratory study on high-temperature adsorption of HCl by dry-injection of Ca(OH)

Junjun TAN,Guohua YANG,Jingqiao MAO,Huichao DAI

《环境科学与工程前沿(英文)》 2014年 第8卷 第6期   页码 863-870 doi: 10.1007/s11783-013-0618-9

摘要: Combustion-generated hydrogen chloride (HCl) is considered to be a very hazardous acid gaseous pollutant. This paper presents a laboratory study on the dry adsorption of HCl. The experiments were conducted in a dual-layer granular bed filter, at gas temperatures of 500°C–700°C and (Ca)/ (Cl)molar ratios of 1.0–5.0 using the silver nitrate titration method by dry adsorbent powders Ca(OH) . Mainly, the adsorption efficiency of HCl and utilization efficiency of Calcium were studied, by varying relevant factors including (Ca)/ (Cl), temperature, feeding method, water vapor and CO . With a relatively higher HCl concentration of 1000 ppm, the experimental results revealed that 600°C may be the optimum temperature for HCl adsorption when optimum (Ca)/ (Cl) was 2.5 in our tests. The results also demonstrated that the feeding at a constant pressure was more effective, and the HCl adsorption efficiency could rapidly reach over 90% with (Ca)/ (Cl) = 2.5 at 600°C. Furthermore, the HCl adsorption efficiency was found to be slightly promoted by water vapor, while could be impeded by CO , and the utilization efficiency of calcium could be up to 74.4% without CO , while was only 36.8% with CO when (Ca)/ (Cl) was 2.5 at 600°C.

关键词: acid gas HCl     Ca(OH)2     dry adsorption     high temperature     dual-layer granular bed filter    

温差能与低温海水资源综合利用研究

付强,王国荣,周守为,钟林,张理,余兴勇,杨浦

《中国工程科学》 2021年 第23卷 第6期   页码 52-60 doi: 10.15302/J-SSCAE-2021.06.007

摘要:

我国海洋温差能资源量巨大,主要分布在广东省和南海海域,是区域能源结构优化以实现碳达峰、碳中和的有效支撑,也是未来我国南海、 21 世纪海上丝绸之路沿线诸多岛屿能源补给保障的重要途径;目前海洋温差能发电( OTEC)技术和装备尚处于实验阶段,兆瓦级试验电站建设成本巨大,整体技术成熟度不及商业级利用规模,亟待发展突破。本文总结了国内外 OTEC 及综合利用的发展模式、技术装备所面临的挑战,针对南海温差能资源开发困境、广东省液化天然气( LNG)冷能资源浪费等情况,提出了以 LNG 气化的低温海水替代深层海水进行温差能发电的新途径。建议以珠海 LNG 气化站为例,探索 LNG 冷能回收 – 温差能发电、低温冷海水综合利用示范基地的发展模式;通过初步概算示范基地的投资与收益,完成了相应模式的经济与技术可行性论证。相关发展模式建议、应用案例论证过程,可为我国温差能与低温海水资源综合利用提供技术借鉴和应用参考。

关键词: 海洋温差能     低温海水资源     LNG冷能     综合利用     温差能发电    

Computational fluid dynamics applied to high temperature hydrogen separation membranes

Guozhao JI, Guoxiong WANG, Kamel HOOMAN, Suresh BHATIA, Jo?o C. DINIZ da COSTA

《化学科学与工程前沿(英文)》 2012年 第6卷 第1期   页码 3-12 doi: 10.1007/s11705-011-1161-5

摘要: This work reviews the development of computational fluid dynamics (CFD) modeling for hydrogen separation, with a focus on high temperature membranes to address industrial requirements in terms of membrane systems as contactors, or in membrane reactor arrangements. CFD modeling of membranes attracts interesting challenges as the membrane provides a discontinuity of flow, and therefore cannot be solved by the Navier-Stokes equations. To address this problem, the concept of source has been introduced to understand gas flows on both sides or domains (feed and permeate) of the membrane. This is an important solution, as the gas flow and concentrations in the permeate domain are intrinsically affected by the gas flow and concentrations in the feed domain and vice-versa. In turn, the source term will depend on the membrane used, as different membrane materials comply with different transport mechanisms, in addition to varying gas selectivity and fluxes. This work also addresses concentration polarization, a common effect in membrane systems, though its significance is dependent upon the performance of the membrane coupled with the operating conditions. Finally, CFD modeling is shifting from simplified single gas simulation to industrial gas mixtures, when the mathematical treatment becomes more complex.

关键词: membrane     gas separation     computational fluid dynamics     concentration polarization     hydrogen    

标题 作者 时间 类型 操作

Dynamic simulation of a space gas-cooled reactor power system with a closed Brayton cycle

期刊论文

山东石岛湾200 MWe 球床模块式高温气冷堆(HTR-PM) 核电站示范工程

张作义, 董玉杰, 李富, 张征明, 王海涛, 黄晓津, 李红, 刘兵, 吴莘馨, 王宏, 刁兴中, 张海泉, 王金华

期刊论文

A numerical study of helium-heated inorganic membrane reformer coupling to HTGR

YIN Huaqiang, JIANG Shengyao, JU Huaiming, ZHANG Youjie

期刊论文

我国高温气冷堆发展战略研究

张作义,吴宗鑫,王大中,童节娟

期刊论文

中国高温气冷堆制氢发展战略研究

张平,徐景明,石磊,张作义

期刊论文

Improvement of part-load performance of gas turbine by adjusting compressor inlet air temperature and

期刊论文

Corrosion mechanisms of candidate structural materials for supercritical water-cooled reactor

Lefu ZHANG, Fawen ZHU, Rui TANG

期刊论文

Modeling the gas flow in a cyclone separator at different temperature and pressure

Gujun WAN, Guogang SUN, Cuizhi GAO, Ruiqian DONG, Ying ZHENG, Mingxian SHI

期刊论文

Preliminary design of an SCO conversion system applied to the sodium cooled fast reactor

期刊论文

Studies on advanced water-cooled reactors beyond generation III for power generation

CHENG Xu

期刊论文

美国高温气冷堆现状

Andrew C. Kadak

期刊论文

Feasibility analysis of modified AL-6XN steel for structure component application in supercritical water-cooled

Xinggang LI, Qingzhi YAN, Rong MA, Haoqiang WANG, Changchun GE

期刊论文

Laboratory study on high-temperature adsorption of HCl by dry-injection of Ca(OH)

Junjun TAN,Guohua YANG,Jingqiao MAO,Huichao DAI

期刊论文

温差能与低温海水资源综合利用研究

付强,王国荣,周守为,钟林,张理,余兴勇,杨浦

期刊论文

Computational fluid dynamics applied to high temperature hydrogen separation membranes

Guozhao JI, Guoxiong WANG, Kamel HOOMAN, Suresh BHATIA, Jo?o C. DINIZ da COSTA

期刊论文